
1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 1/22

Determining a String's Length

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 2/22

In [1]:

Copying One String to Another

Hello contains 5 characters
Hello, World contains 12 characters

#include <stdio.h>

int stringlength(const char *string)
{
 int i = 0;
 while (*string++)
 i++;
 return(i);
}

int main(void)
{
 char stringOne[] = "Hello";
 char stringTwo[] = "Hello, World";

 printf("%s contains %d characters\n", stringOne, stringlength(stringOne));
 printf("%s contains %d characters\n", stringTwo, stringlength(stringTwo));
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 3/22

In [2]:

Appending One String's Contents to Another

Kris

#include <stdio.h>

char *stringcopy(char *source, char *destination)
{
 char *originalDestination = destination;

 while (*destination++ = *source++)
 ;

 return(originalDestination);
}

int main(void)
{
 char firstName[64] = "Kris";
 char copy[64];

 stringcopy(firstName, copy);
 printf("%s\n", copy);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 4/22

In [3]:

Appending n Characters of One String to
Another

Hello, World

#include <stdio.h>

char *stringappend(char *source, char *destination)
{
 char *originalDestination = destination;

 // find end of first string
 while (*destination)
 destination++;

 while (*destination++ = *source++)
 ;

 return(originalDestination);
}

int main(void)
{
 char string[64] = "Hello, ";
 char stringTwo[64] = "World";

 stringappend(stringTwo, string);
 printf("%s\n", string);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 5/22

Another
In [4]:

Hello, Wor

#include <stdio.h>

char *stringappendN(char *source, char *destination, int n)
{
 char *originalDestination = destination;

 int i = 0;

 // find end of first string
 while (*destination)
 destination++;

 // append up to n characters
 while((i++ < n) && (*destination++ = *source++))
 ;

 if (i > n)
 *destination = '\0';

 return(originalDestination);
}

int main(void)
{
 char string[64] = "Hello, ";
 char stringTwo[64] = "World";

 stringappendN(stringTwo, string, 3);
 printf("%s\n", string);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 6/22

Determining if Two Strings are the Same
In [5]:

Hello, world! and Hello, world! are the same

#include <stdio.h>

int stringsequal(char *s1, char *s2)
{
 while ((*s1 == *s2) && *s1)
 {
 s1++;
 s2++;
 }

 return ((*s1 == '\0') && (*s2 == '\0'));
}

int main(void)
{
 char stringOne[] = "Hello, world!";
 char stringTwo[] = "Hello, world!";
 char stringThree[] = "Hello, mundo!";

 if (stringsequal(stringOne, stringTwo))
 printf("%s and %s are the same\n", stringOne, stringTwo);

 if (stringsequal(stringThree, stringTwo))
 printf("%s and %s are the same\n", stringThree, stringTwo);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 7/22

Converting Strings to Upper and Lowercase
In [6]:

Hello, world!
HELLO, WORLD!
hello, world!

#include <stdio.h>

char *stringupper(char *string)
{
 char *original_string = string;
 printf("%s\n", string);
 while (*string)
 {
 if ((*string >= 'a') && (*string <= 'z'))
 *string = *string - ('a' - 'A');

 string++;
 }

 return(original_string);
}

char *stringlower(char *string)
{
 char *original_string = string;

 while (*string)
 {
 if ((*string >= 'A') && (*string <= 'Z'))
 *string = *string + ('a' - 'A');

 string++;
 }

 return(original_string);
}

int main(void)
{
 char string[64] = "Hello, world!";

 stringupper(string);
 printf("%s\n", string);

 stringlower(string);
 printf("%s\n", string);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 8/22

Returning a Pointer to the First Occurrence of a
Character within a String

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 9/22

In [7]:

Found l in Hello, world! at offset 2
Did not find m in Hello, world!

#include <stdio.h>
#include <string.h>

char *stringcharacter(char *string, const char letter)
{
 while ((*string != letter) && *string)
 string++;

 return(*string ? string : 0);
}

int main(void)
{
 char string[64] = "Hello, world!";

 char *ptr = stringcharacter(string, 'l');

 if (ptr)
 printf("Found %c in %s at offset %ld\n", 'l', string, ptr-string);
 else
 printf("Did not find %c in %s\n", 'l', string);

 ptr = stringcharacter(string, 'm');

 if (ptr)
 printf("Found %c in %s at offset %ld\n", 'm', string, ptr-string);
 else
 printf("Did not find %c in %s\n", 'm', string);

}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 10/22

Finding the Rightmost Occurrence of a Character
within a String

In [8]:

Found l in Hello, world! at offset 10
Did not find m in Hello, world!

#include <stdio.h>
#include <string.h>

char *stringcharacterR(char *string, const char letter)
{
 char *ptr = NULL;

 while (*string)
 {
 if (*string == letter)
 ptr = string;

 string++;
 }

 return(ptr);
}

int main(void)
{
 char string[64] = "Hello, world!";

 char *ptr = stringcharacterR(string, 'l');

 if (ptr)
 printf("Found %c in %s at offset %ld\n", 'l', string, ptr-string);
 else
 printf("Did not find %c in %s\n", 'l', string);

 ptr = stringcharacterR(string, 'm');

 if (ptr)
 printf("Found %c in %s at offset %ld\n", 'm', string, ptr-string);
 else
 printf("Did not find %c in %s\n", 'm', string);

}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 11/22

Counting the Number of Occurrence of a
Character within a String

In [9]:

Comparing the Contents of Two Strings

The letter l occurs 3 times in Hello, world!
The letter m occurs 0 times in Hello, world!

#include <stdio.h>

int charactercount(const char *string, const char letter)
{
 int count = 0;

 while (*string)
 if (*string++ == letter)
 count++;

 return(count);
}

int main(void)
{
 char string[] = "Hello, world!";
 char letter = 'l';
 printf("The letter %c occurs %d times in %s\n", letter, charactercount(string,

 letter = 'm';
 printf("The letter %c occurs %d times in %s\n", letter, charactercount(string,
}

0 if equal
-1 if string1 < string2

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 12/22

In [10]:

Comparing Hello, World and Hello, World returns 0
Comparing Hello, World and Hello, World! returns -1
Comparing Hello, World and hello, world returns 1

1 if string1 > string2

#include <stdio.h>

int stringcompare(const char *s1, const char *s2)
{
 while ((*s1 == *s2) && (*s1))
 {
 s1++;
 s2++;
 }

 if ((*s1 == *s2) && (! *s1))
 return(0); // same
 else if ((*s1) && (!*s2))
 return(1); // s1 longer
 else if ((*s2) && (!*s1))
 return(-1); // s2 longer
 else if ((*s1) != (*s2))
 return((*s1 > *s2) ? -1: 1); // different
}

int main(void)
{
 char stringOne[] = "Hello, World";
 char stringTwo[] = "Hello, World";
 char stringThree[] = "Hello, World!";
 char stringFour[] = "hello, world";

 printf("Comparing %s and %s returns %d\n", stringOne, stringTwo, stringcompare(
 printf("Comparing %s and %s returns %d\n", stringTwo, stringThree, stringcompare
 printf("Comparing %s and %s returns %d\n", stringOne, stringFour, stringcompare
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 13/22

Finding a Substring within a String
In [11]:

Found World in Hello, World! at offset 7
Found ! in Hello, World! at offset 12

#include <stdio.h>

char *substring(char *string, const char *substring)
{
 int i, j, k;

 for (i = 0; string[i]; ++i)
 for (j = i, k = 0; string[j] == substring[k]; j++, k++)
 if (! substring[k+1])
 return(string+i);

 return(NULL);
}

int main(void)
{
 char string[64] = "Hello, World!";
 char *ptr;

 ptr = substring(string, "World");
 if (ptr)
 printf("Found World in %s at offset %ld\n", string, ptr-string);

 ptr = substring(string, "!");
 if (ptr)
 printf("Found ! in %s at offset %ld\n", string, ptr-string);

 ptr = substring(string, "mundo");
 if (ptr)
 printf("Found mundo in %s at offset %ld", string, ptr-string);
 }

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 14/22

Removing a Substring from a String

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 15/22

In [12]:

Original Hello, World! without World! yields Hello,
Original Hello, World! without WORLD yields Hello, World!
Original Hello, World! without ! yields Hello, World

#include <stdio.h>
#include <string.h>

char *removesubstring(char *string, const char *substring)
{
 int i, j, k, location = -1;
 char *original_string = string;
 int oldLength = strlen(string);

 for (i = 0; string[i] && location == -1; ++i)
 for (j = i, k = 0; string[j] == substring[k]; j++, k++)
 if (! substring[k+1])
 location = i;

 if (location != -1)
 {
 for (k = 0; substring[k]; k++)
 ;

 for (j = location, i = location + k; string[i]; j++, i++)
 string[j] = string[i];
 string[j] = '\0';
 }

 return(string);
}

int main(void)
{
 char string[64] = "Hello, World!";
 char stringTwo[64] = "Hello, World!";

 printf("Original %s without %s yields %s\n", "Hello, World!", "World!", remove
 printf("Original %s without %s yields %s\n", "Hello, World!", "WORLD", removes
 printf("Original %s without %s yields %s\n", "Hello, World!", "!", removesubst
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 16/22

Removing Every Occurrence of a Substring from
a String

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 17/22

In [13]:

Original Hello, World! without World! yields Hello,
Original Hello, World! without l yields Heo, Word!
Original Hello, World! without ! yields Hello, World

#include <stdio.h>
#include <string.h>

char *removesubstringAll(char *string, const char *substring)
{
 int i, j, k, location = -1;
 char *original_string = string;
 int oldLength = strlen(string);

 for (i = 0; string[i] && location == -1; ++i)
 for (j = i, k = 0; string[j] == substring[k]; j++, k++)
 if (! substring[k+1])
 location = i;

 if (location != -1)
 {
 for (k = 0; substring[k]; k++)
 ;

 for (j = location, i = location + k; string[i]; j++, i++)
 string[j] = string[i];
 string[j] = '\0';
 }

 if (location != -1)
 return(removesubstringAll(string, substring));
 else
 return(string);
}

int main(void)
{
 char string[64] = "Hello, World!";
 char stringTwo[64] = "Hello, World!";
 char stringThree[64] = "Hello, World!";

 printf("Original %s without %s yields %s\n", "Hello, World!", "World!", remove
 printf("Original %s without %s yields %s\n", "Hello, World!", "l", removesubst
 printf("Original %s without %s yields %s\n", "Hello, World!", "!", removesubst
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 18/22

Replacing One Substring with Another

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 19/22

In [14]:

Original Hello, World! replacing World with WORLD yields Hello, WORLD!
Original Hello, World! replacing Mundo with WORLD yields Hello, World!
Original Hello, World! replacing World with WORLD yields Hello, WORLD!
Original Hello, World! replacing Hello, with yields World!

#include <stdio.h>
#include <string.h>

char *replacesubstring(char *string, const char *substring, char *new)
{
 int i, j, k, location = -1;
 char *original_string = string;
 int old_length = strlen(substring);
 char temp[256];

 for (i = 0; string[i] && location == -1; ++i)
 for (j = i, k = 0; string[j] == substring[k]; j++, k++)
 if (! substring[k+1])
 location = i;

 if (location != -1)
 {
 for (j = 0; j < location; j++)
 temp[j] = string[j];

 for (i = 0; new[i]; j++, i++)
 temp[j] = new[i];

 for (k = location + old_length; string[k]; j++, k++)
 temp[j] = string[k];

 temp[j] = '\0';

 for (i = 0; string[i] = temp[i]; i++)
 ;
 }

 return(string);
}

int main(void)
{
 char string[64] = "Hello, World!";
 char stringTwo[64] = "Hello, World!";
 char stringThree[64] = "Hello, World!";

 printf("Original %s replacing %s with %s yields %s\n", "Hello, World!", "World
 printf("Original %s replacing %s with %s yields %s\n", "Hello, World!", "Mundo
 printf("Original %s replacing %s with %s yields %s\n", "Hello, World!", "World
 printf("Original %s replacing %s with %s yields %s\n", "Hello, World!", "Hello
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 20/22

Using C's strxfrm Function to Copy n Characters
from One String to Another

In [15]:

World

#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[64] = "Hello";
 char secondString[64] = "World Peace";

 strxfrm(string, secondString, 5);
 printf("%s\n", string);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 21/22

Determining if Two Strings are the Same
In [16]:

Hello, World and Hello, World are the same

#include <stdio.h>
#include <string.h>

int main(void)
{
 char stringOne[] = "Hello, World";
 char stringTwo[] = "Hello, World";
 char stringThree[] = "Hello, World!";

 int i;

 for (i = 0; stringOne[i] == stringTwo[i] && stringOne[i]; i++)
 ;
 if (stringOne[i] == '\0' && stringTwo[i] == '\0')
 printf("%s and %s are the same\n", stringOne, stringTwo);

 for (i = 0; stringTwo[i] == stringThree[i] && stringTwo[i]; i++)
 ;
 if (stringTwo[i] == '\0' && stringThree[i] == '\0')
 printf("%s and %s are the same\n", stringTwo, stringThree);
}

1/31/2021 C Programming-Creating Your Own String Library

localhost:8888/notebooks/C Programming-Creating Your Own String Library.ipynb 22/22

What You will Learn Next

C programs use variables to store data as they execute. A variable normally
stores one value of a specific type. You have learned that using arrays, a
variable can store multiple values of the same type.Using a structure in C, you
can create a variable that can hold multiple values of different types.

struct Employee {
 char name[256];
 int age;
 float salary;
} worker;

worker.age = 50;
worker.salary = 100000;

